logo
МСС

39. Метод проверки нормального распределения погрешности измерений (критерий Пирсона)

При обработке экспериментальных данных существенное значение имеет вопрос о том, подчиняется ли результат измерения нормальному закону распределения вероятности. Такая гипотеза должна быть обязательно проверена.

Проверить эту гипотезу можно по виду гистограммы, построенной на основании экспериментальных данных.

Правила построения гистограммы:

  1. интервалы, на которые разбивается ось абсцисс, по возможности, следует выбирать одинаковыми;

  2. число интервалов k устанавливается в соответствии со следующими рекомендациями:

    Число измерений

    Число интервалов

    40-100

    7-9

    100-500

    8-12

    500-1000

    10-16

    1000-10000

    12-22

  3. масштаб нужно выбирать таким, чтобы высота гистограммы относилась к основанию примерно5/8.

Существует несколько критериев согласия, по которым проверяются гипотезы о соответствии экспериментальных данных тому или иному закону распределения вероятности результата измерения. Наиболее распространенным является критерий Пирсона.

При использовании этого критерия за меру расхождения экспериментальных данных с теоретическим законом распределения вероятности результата измерения принимается сумма квадратов отклонения частостей m/n от теоретической вероятности Pi попадания отдельного значения результата измерения в i-й интервал, причем каждое слагаемое берется с коэффициентом n/Pi:

Если расхождение случайно, то подчиняется - распределению.

Вероятность того, что случайное число примет значение, меньшее аргумента этой функции определяется по интегральной функции -квадрат распределения. Можно построить кривые интегральной функции этого распределения для различных значений k. Здесь k соответствует числу интервалов только при проверке соответствия нормальному закону распределения вероятности результата измерения. Поэтому, задавшись значением интегральной функции распределения К.Пирсона , можно проверить, больше или меньше ее аргумента вычисленное значение .

Если <, то с выбранной вероятностью можно считать случайным числом, подчиняющимся -распределению К.Пирсона.

Если >,то с той же вероятностью можно признать, что не подчиняется распределению К.Пирсона.